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ABSTRACT 

We show that a pseudo-Nambu-Goldstone boson, with a potential of the form 
V(d) = A’[1 f cos(+/f)], can naturally give rise to an epoch of infiation in the early 
universe. Successful inflation can be achieved if f - mpl and A - rn~u~. Such mass 
scales arise in particle physics models with a large gauge group that becomes strongly 
interacting at a scale * A, e.g., as can happen in the hidden sector of superstring theories. 
The density fluctuation spectrum is non-scale-invariant, with extra power on large length 
scales. 
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The inflationary universe model was proposed [I] to solve several cosmological puz- 
zles? notably the horizon, flatness, and monopole problems. During the inflationary 
epoch, the energy density of the universeis dominated by a (nearly constant) false vacuum 
energy term p 21 p”.., and the scale factor R(t) of the universe expands exponentially: 
R(t) = R(tl)eH(‘-tl), where H = k/R is the Hubble parameter, Ha = 8rGp/3 - k/R2 
(2 8rGp,,,/3 during inflation), and tl is the time at the beginning of inflation. If the 
interval of exponential expansion satisfies t - t1 2 6OH-‘, a small causally connected re- 
gion of the universe grows to a sufficiently large size to explain the observed homogeneity 
and isotropy of the universe, to dilute any overdensity of magnetic monopoles, and to 
flatten the spatial hypersurfaces, Jl E 8xGp/3H2 --t 1. 

To satisfy a combination of constraints on subsequent inflationary models [2], in par- 
ticular, sufficient inflation (2 60 e-foldings of the scale factor) and microwave background 
anisotropy limits [3] on the generation of density fluctuations, the potential of the field 
responsible for inflation (the inBaton) must be very flat. For a general class of inflation 
models involving a single slowly-rolling field (including new [4], chaotic [5], and double 
field inflation [6]), the ratio of the height to the (width)’ of the potential must satisfy [7] 

x = AV/(Ad)” 5 O(lO-’ - lo-*), (1) 

where AV is the change in the potential V(4) and Ad is the change in the field 4 during 
the slowly rolling portion of the inflationary epoch. (For extended inflation, x < U(lO-“) 
[B].) Consequently, the inflaton must be extremely weakly self-coupled, with effective 
quartic self-coupling constant X+ < O(x) [7] (in realistic models, X+ < lo-“). 

While a number of workable inflation models (satisfying Eqn.(l)) have been proposed 
[9], none of them is compelling from a particle physics standpoint. In some cases, the tiny 
coupling X.+ is simply postulated ad hoc at tree level, and then must be fine-tuned to keep 
it small in the presence of radiative corrections. But this merely replaces a cosmological 
naturalness problem with unnatural particle physics. The situation is improved in models 
where the smallness of X+ is protected by a symmetry, e.g., supersymmetry. In these 
cases [IO], X+ may arise from a small ratio of mass scales; however, the required mass 
hierarchy, while stable, is itself unexplained, and is postulated solely in order to generate 
successful inflation. It would be preferable if such a hierarchy, and thus inflation itself, 
arose dynamically in particle physics models, instead of being imposed upon them. 

Nambu-Goldstone bosons are ubiquitous in particle physics models: they arise when- 
ever a global symmetry is spontaneously broken. If there is additional explicit symmetry 
breaking, these particles become pseudo-Nambu-Goldstone bosons (PNGBs). In mod- 
els with a large global symmetry breaking scale f, PNGBs are very weakly interacting, 
since their couplings are suppressed by inverse powers of f. For example, in ‘invisible’ 
axion models [11,12] with Peccei-Quinn scale fpQ w 10’s GeV, the axion self-coupling is 
A. - (AQCD/fPQ)’ N lo-“. (This simply reflects the hierarchy between the QCD and 
GUT scales, which arises from the slow logarithmic running of QQco.) Due to the nor&n- 
early realized global symmetry, the potential for PNGBs is exactly flat at tree level. The 
symmetry may be explicitly broken by loop corrections, as in schizon [13] and axion [ll] 
models. In the case of axions, for example, the PNGB mass arises from non-perturbative 
gauge-field configurations (instantons) through the chiral anomaly. When the associated 
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gauge group becomes strong at a mass scale A, instanton effects give rise to a periodic 
potential of height - ’ .i’ for the PNGB field [14j. Since the nonlinearly realized symmetry 
is restored as A -+ 0, the flatness of the PNGB potential is natural in the sense oi’t Hooft 

1151. 
The resulting PNGB potential is generally of the form 

V(d) = A’[1 f cos(N4/f)]. (2) 

We will take the positive sign in Eqn(2) (this choice has no effect on our results) and, 
unless otherwise noted, assume N = 1, so the potential, of height 2A4, has a unique 
minimum at 4 = nf (we assume the periodicity of +4 is 2nf). We show below that, for 
appropriately chosen values of the mass scales, namely f - m,l and A - rno~~ - 10’s 
GeV, the PNGB field 4 can drive inflation. (Note that this is consistent with Eqn.(l), 
since x - (A/f)” - lo-‘s.) These mass scales can arise naturally in particle physics 
models. For example, in the hidden sector of superstring theories, if a large non-Abelian 
group remains unbroken, the running gauge coupling can become strong at the GUT scale 
[16]; then the role of the PNGB inflaton might be played, e.g., by the model-independent 
axion [17]. 

For temperatures 2’ 5 f, the global symmetry is spontaneously broken, and the field 
4 describes the phase degree of freedom around the bottom of a Mexican hat. Since 4 
thermally decouples at a temperature T - fr/mrl - f, we assume it is initially laid 
down at random between 0 and 2nf in different causally connected regions. Within each 
Hubble volume, the evolution of the field is described by 

~+3Hd+r$+v’(qq=O, (3) 

where P is the decay width of the inflaton. In the temperature range A 5 T 5 f, the 
potential V(d) is dynamically irrelevant, because the forcing term V’(4) is negligible 
compared to the Hubble-damping term. (In addition, for sxion models, A + 0 as 
T/A -+ co due to the high-temperature suppression of instantons [14].) Thus, in this 
temperature range, aside from the smoothing of spatial gradients in 4, the field does 
not evolve. Finally, for T 5 A, in regions of the universe with 4 initially near the top 
of the potential, the field starts to roll slowly down the hill toward the minimum. In 
those regions, the energy density of the universe is quickly dominated by the vacuum 
contribution (V(d) N 2A’ 2 prod - T’), and the universe expands exponentially. Since 
the initial conditions for 4 are random, our model is closest in spirit to the chaotic 
inflationary scenario [5]. 

To successfully solve the cosmological puzzles of the standard cosmology, an infla- 
tionary model must satisfy a variety of constraints. 

1) Slow-Rolling Regime. The field is said to be slowly rolling (SR) when its motion 
is overdamped, i.e., 4 << 3H+% (n.b., we assume P < H). Two necessary conditions 
must be satisfied for the motion to be overdamped [2]: 

iV”(q5)l 5 9H’ , i.e., @$gy+z (4) 
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and V’(4J)mpr 1 I 5 vGG , i.e., +4/f) &f 
V(4) 1 i-cos(d/f) s 77zpl (5) 

From Eqns. (4) and (5) the existence of a broad SR regime requires f 2 m,l/&&i 
(required below for other reasons). The SR regime ends when 4 reaches a value 42, at 
which one of the inequalities (4) or (5) is violated. For example, for f = mpl, the end 
of the SR epoch is at &/f = 2.98 (nearly at the minimum of the potential), while for 
f = m,,l/&, &/f = 1.9. Clearly, as f grows, &/f approaches K. (Here and below, 
we assume inflation begins at a field value 0 < 41 /f < rr; since the potential is symmetric 
about its minimum, we can just s,s easily consider the case r < +41/f < 2n.) 

2) Suficient ir$a&~n. We demand that the scale factor of the universe inflates by 
at least 60 e-foldings during the SR regime (in principle, there could be some additional 
inflation later), 

Ne(h,h,f) -ln(Ra/R,) = i;‘Hdt = s/-y $$d) 

= 31, [z?$$;;] 2 60. (6) 

Using Eqns. (4) and (5) to determine 41 es a function of f, the constraint (6) de- 
termines the maximum value (d;noa) of 4 1 consistent with sufficient inflation. For ex- 
ample, the initial value of the field must satisfy &/f 5 2.1,0.6,10ma and lO-‘O for 

f = 3m,l, mPr, m,1/2, and m,l/& respectively. 

The kaction of the universe with & E [0,4?’ ] will inflate sufficiently. If we assume 
that 41 is randomly distributed between 0 and rf from one horizon volume to another, 
the probability of being in such a region is 4yz/n. For f = 3mpl,mpl, and rnPlla, the 
probability is 0.7, 0.2, and 3 x 10m3. Since the fraction of the universe that inflates 
sufficiently drops precipitously with decreasing f, the scenario is only tenable (in the 
sense that initial conditions do not need to be severely fine-tuned) for f near mpl. 

3) Density Fluctuations. Inflationary models generate density fluctuations with am- 
plitude [18] 

WP = II= Id ? (7) 

where the right hand side is evaluated at the time when the fluctuation crossed outside 
the horizon during inflation, and 6p/p is the amplitude of the perturbation when it crosses 
back inside the horizon after inflation. Fluctuations on observable scales are produced 
during the time period (60 - 50) e-foldings before the end of inflation. The largest 
amplitude perturbations are produced at 60 e-foldings before the end of inflation, 

3'2 [l + COS(f#y"/f)]3/2 . 
+4i”“‘lf 1 

Constraints on the anisotropy of the microwave background [3] require ~Sp/p 5 5 x lo-‘; 
applying this to Eqn.(8), we find, e.g., 

A 5 5 x 1Ol5 GeV for f = mpl (94 

A 5 9 x 10” GeV for f = m,l/2 . WI 
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Thus, to generate the fluctuations responsible for large-scale structure, A should be com- 
parable to the GUT scale, and the inflaton mass m+ = As/f +- 10” - 2 x lOi GeV. 

In this model, the fluctuations deviate from a scale-invariant spectrum. For f 5 

3m,1/4, the amplitude grows with mass scale M as [2] 6p/p - Mm:l/4s*f’. As a result, 
the primordial power spectrum (at fixed time) is a power law, 16~1~ N k”, with spectral 
index n N 1 - (m$/8xf2). Since there is extra power on large scales, this may have 
important implications for large-scale structure: if n N 0.6, corresponding to f 21 m,l/3, 
the observed large-scale velocity flows can be more easily accounted for [19] (than if 
7% = 1). 

In new inflation models, satisfying the density perturbation constraint usually implies 
a very large number of e-foldings of the scale factor. Here, there will be many regions of 
the universe which inflate less than 60 e-foldings and which generate acceptable density 
fluctuations. Thus, this model might be easily embedded in double-inflation scenarios 
that also seek to produce extra power on large scales [20]. 

4) Quantum Fluctuations. For the semi-classical treatment of the scalar field to 
be valid, the initial value of the field must be larger than the characteristic quantum 
fluctuations in 4, i.e., 41 2 A4 = H/2x. For example, this requires &/f > lo-’ for f = 
m,l, and -$1/f > 6 x lo-’ for f = mp~12. Since &““” > H/27r over the entire parameter 
range of interest, this constraint does not place significant restrictions on the model. 

5) Reheating. At the end of the SR regime, the field 4 begins to oscillate about the 
minimum of the potential,, and gives rise to particle and entropy production. The decay 
of 4 into fermions and gauge bosons reheats the universe to a temperature [2] 

TRH = (&)I”-i+&%i 9-1 , (10) 

where g* is the number of relativistic degrees of freedom. On dimensional grounds, the 
decay rate is 

r 21 g%n*=/f2 = g2Aaff5, (11) 

where g is an effective coupling constant. (For example, in the original axion model [12], 
g c( axe for two-photon decay, and g2 IX (rn~/rr~,+)~ for decays to light fermions $J.) For 
f = mpl and g. = lOs, we find TRH = min[6 x 10 I4 GeV , 1Osg GeV]. Since we generally 
expect g s 1, the reheat temperature will be TRH 5 1Oa GeV, too low for conventional 
GUT baryogenesis, but high enough if baryogenesis takes place at the electroweak scale. 
Alternatively, the baryon asymmetry can be produced directly during reheating through 
baryon-violating decays of 4 or its decay products. The resulting baryon-to-entropy ratio 
is n~/s N eTRH/rn+ N eghlf - lo-*eg, where s is the CP-violating parameter [9]; 
provided eg 2 lo-‘, the observed asymmetry can be generated. 

6) Spatial Gradients and Topological Defects. In the discussion above, we assumed 
that the Universe is vacuum-dominated (p cz V(d)) when 4 begins to roll down the 
hill. Otherwise, the onset of the inflationary epoch could be delayed or even prevented 
altogether. There are several sources of energy density which could be problematic: 
spatial 4 gradients, global cosmic strings, and domain walls. For a spatial fluctuation 
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with amplitude 64 and wavelength L, the gradient energy density is (Vd)’ N (LQ+/L)~. 
Requiring this to be less than the potential V(4) at the onset of inflation leads to the 
constraint LH 2 3(@/f)(f/mpt); in order not to dominate the energy density of the 
universe, large amplitude gradients (64 N 
Hubble length, L 2 H-l, at T 

f) must have wavelengths longer than the 
- A [21]. However, gradients on subhorizon scales 

(L s H-l) are expected to be smoothed out by the beginning of inflation: since the 
potential is inoperative for T 2 A, these gradients are damped (redshifted away) by the 
Hubble expansion [22]. Thus, the gradient energy density at T N A is at most comparable 
to the potential and quickly becomes sub-dominant [23]; the net effect is to delay only 
slightly the onset of inflation. This conclusion follows as long as there also exists a long- 
wavelength mode (L >> H-‘) with amplitude 64 - f; in this case, there will be regions 
with & < $ya’ which inflate [23]. Since 4 is initially Poisson distributed, we expect 
roughly equal power on all scales at T - f, i.e., 64.5 - f independent of L (at least for 

LZm;‘l; consequently, gradients should be innocuous, and the probability for inflation 
will be given by the estimates in section 2 above. 

To be conservative, however, we can assume that we must be in a region of the 
universe that is homogeneous over at least O(1) horizon volume at the onset of infla- 
tion. To calculate what fraction of the universe has 0 5 & 5 dy” (or the equivalent 
at other maxima of the potential) over a horizon volume, we model the universe as a 
tetrahedral lattice with vertices separated by a Hubble length and assume the field is 
uncorrelated from one vertex point to another. Requiring each point of a tetrahedron 
to have 41 5 dp”, we fmd that the fraction of the universe that is homogeneous and 
inflates is 2iV(4”oa/27rfN)‘, where the number of distinct minima of the potential is N. 
For f = m,l, 4y”““/f = 0.6, and the probability for such a smooth patch is 2 x lo-‘N-‘. 
For f = m,l/2, q5i” N_ 10-s, and the probability is only 10-11N-3. From this argu- 
ment, the scale f must be very near mpr to avoid fine tuning the initial conditions. On 
the other hand, if the previous paragraph is correct, the constraints from gradients are 
not so severe; ultimately, the issue should be settled by numerical simulations. 

Initial gradients in 4 may also lead to global cosmic strings, which form in the 
symmetry breaking at T - f, and to domain walls, which form at T - A if the PNGB 
potential is multiply degenerate (N > 1) [24]. Th e energy density in strings, which 
correspond to configurations in which 4/f winds around 2n and have dimensionless mass 
per unit length G/J - (f/rnpl)l - 1, is comparable to the gradient density estimated 
above, assuming of order one string per horizon. The initial energy density in domain 
walls, PDW N aH, where u N fA2 is the wall surface energy per unit area, will also be 
of the same order of magnitude. Since their energy densities redshift away, topological 
defects do not prevent the universe from inflating, but, like gradients, delay briefly the 
onset of inflation. Once inflation takes place, our observable universe lies deep inside a 
single domain with 4 = rf, so both strings and domain walls are inflated away. 

In conclusion, a pseudo-Nambu-Goldstone boson, with a potential [eqn.(2)] that 
arises naturally from particle physics models, can lead to successful inflation if the global 
symmetry breaking scale f N mpr and A N rnCU*. 
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